

0960-894X(94)E0051-F

## The Chemical Synthesis of *Leishmania donovani* Phosphoglycan Fragments

Andrey V. Nikolaev\*a,b, Trevor J. Rutherfordb, Michael A.J. Fergusonb, and John S. Brimacombe<sup>a</sup>

Departments of <sup>a</sup>Chemistry and <sup>b</sup>Biochemistry, University of Dundee, Dundee DD1 4NH, U.K.

**Abstract:** The tetraglycosyl monophosphate 1, hexaglycosyl diphosphate 2 and octaglycosyl triphosphate 3, which are fragments of the phosphoglycan portion of *Leishmania donovani* lipophosphoglycan, have been prepared using disaccharide H-phosphonates for construction of the phosphodiester linkages.

The lipophosphoglycan (LPG) produced by the promastigote stage of the protozoan parasite  $Leishmania\ donovani$  is the most abundant macromolecule on the cell surface. The phosphoglycan portion is a linear poly(glycosyl phosphate) consisting of  $\beta$ -D-galactosyl-(1-4)- $\alpha$ -D-mannosyl phosphate repeat units and capped by a D-mannobiosyl phosphate unit at the nonreducing end<sup>1</sup>. We now report the synthesis of the tetra-, hexa- and octa-saccharide fragments 1-3 of the phosphoglycan. All the synthetic oligomers contain a 9-decenyl aglycone moiety and are designed to be used for both biosynthetic studies and the preparation of artificial antigens.

Manp(α1-2)Manp(α)-PO<sub>4</sub>H-[6Galp(β1-4)Manp(α)-PO<sub>4</sub>H]<sub>16</sub> -- glycosyl phosphatidylinositol anchor LPG Leishmania donovani

Galp( $\beta$ 1-4)Manp( $\alpha$ )-[PO<sub>4</sub>H-6Galp( $\beta$ 1-4)Manp( $\alpha$ )]<sub>n</sub>-O(CH<sub>2</sub>)<sub>8</sub>CHCH<sub>2</sub> 1 n = 1, 2 n = 2

 $Manp(\alpha 1-2)Manp(\alpha)-[PO_4H-6Galp(\beta 1-4)Manp(\alpha)]_3-O(CH_2)_8CHCH_2$  3

Our approach is based on the use of the glycosyl H-phosphonate method<sup>2</sup> for the synthesis of the phosphodiester linkages, with the glycobiosyl H-phosphonate derivatives 11 and 16 being used for stepwise elongation of the oligomeric chain. The monohydroxylic 9-decenyl bioside 8 served as the first acceptor during the elongation. It was prepared using acetobromogalactose and the 2,3,6-tri-O-benzoyl- $\alpha$ -D-mannoside 4 (ref. 3) as the starting materials. The base deficient glycosylation reaction (AgSO<sub>3</sub>CF<sub>3</sub> and 2,4,6-collidine)<sup>4</sup> resulted in  $\beta$ -linked disacharide 6 (67%) and its  $\alpha$ -linked isomer (15%). Derivative 8 (ref. 5) was prepared by O-deacetylation of 6 with HCl/MeOH<sup>6</sup>, followed by successive treatment with dimethoxytrityl chloride and benzoyl chloride in pyridine and detritylation (TFA/CH<sub>2</sub>Cl<sub>2</sub>) in an overall yield of 71%.

The H-phosphonate block 11, containing a temporary dimethoxytrityl protecting group at O-6', was prepared from acetobromogalactose and 1,2,3,6-tetra-O-benzoyl- $\alpha$ -D-mannose 5 (ref. 7). The base deficient glycosylation (as above) gave disaccharide 7 (71%), which was converted into 9

(66%) by consecutive O-deacetylation with  $Mg(OMe)_2$  in  $MeOH^8$ , dimethoxytritylation and benzoylation. The latter was selectively 1-O-deacylated<sup>2</sup> with  $Me_2NH$  in acetonitrile to give the  $\alpha$ -OH-derivative 10 (77%), which on phosphitylation<sup>2</sup> with tri-imidazolylphosphine (prepared from PCl<sub>3</sub>, imidazole and Et<sub>3</sub>N) and mild hydrolysis gave the H-phosphonate derivative 11 (ref. 9) in a yield of 92%.

The base deficient glycosidation (as above) of 1,3,4,6-tetra-O-acetyl-β-D-mannose 13 (purchased from Aldrich) with benzobromomannose 12 furnished the disaccharide 14, which was converted into the mannobiosyl H-phosphonate 16 (ref. 9; 92% from 13) by successive 1-O-deacylation, phosphitylation and hydrolysis, as described for 9.

The elongation cycle for synthesis of the oligomers 1-3 involved coupling of a glycobiosyl H-phosphonate derivative with a hydroxylic acceptor, followed by oxidation of the resulting H-phosphonic diester to the phosphoric diester prior to removal of the temporary dimethoxytrityl

protecting group. Condensation of 11 and 8 in pyridine in the presence of 1-adamantanecarbonyl chloride followed by in situ oxidation with I<sub>2</sub> in pyridine-water and mild detritylation (1% TFA/CH<sub>2</sub>Cl<sub>2</sub>, 0°C) led to the partially benzoylated tetrasaccharide phosphoric diester 17 in an overall yield of 81%. The hexasaccharide diphosphate derivative 18 was prepared in a yield of 75% from 11 and 17 by the sequence of reactions described. On the final step the O-protected octasaccharide triphosphate derivative 19 (ref. 9) was synthesized in a yield of 89% from the mannobiosyl H-phosphonate 16 and 18 using standard procedures for condensation and oxidation. O-Deacylation of 17, 18, and 19 with 0.05 M MeONa in MeOH led to the target oligo(glycobiosyl phosphates) 1, 2, and 3, respectively, in the yields greater than 90%.

The structures assigned to the oligomers 1, 2, and 3 were supported by NMR and electrospray-MS data. The <sup>31</sup>P NMR data<sup>10</sup> are characteristic of glycoside linked phosphoric

diesters<sup>2</sup>. The presence of the (1-6)-phosphodiester linkages was confirmed by the C-1 and C-2 signals of the corresponding mannose units and the C-5 and C-6 signals of the corresponding galactose units in the  $^{13}$ C NMR spectra<sup>11</sup>. The signals were shifted as a result of the  $\alpha$ - and  $\beta$ -effects of phosphorylation and coupled with P. The  $\alpha$ -configuration of the mannosyl phosphate fragments followed from the the positions of the Man', Man" and Man'' C-3 and C-5 resonances. The latter were close to the chemical shifts of C-3 and C-5 of  $\alpha$ -D-mannopyranosyl phosphate<sup>12</sup> taking into account the influence of the glycosyl substituents at the positions 4 (for Man' and Man'') and 2 (for Man'''). The molecular masses of the oligomers were strictly confirmed by the data of negative charge electrospray-mass-spectra. The main signals in the spectra corresponded to the pseudo-molecular ions for the monophosphate 1 [m/z 883.4, (M-H)-], diphosphate 2 [m/z 643.3, (M-2H)<sup>2</sup>-] and triphosphate 3 [m/z 455.3, (M-3H)<sup>3</sup>-].

To summarize, the first chemical syntheses of fragments (up to octasaccharide) of a natural phosphoglycan, consisting of glycobiosyl phosphate units, have been achieved using the glycosyl H-phosphonate method<sup>2</sup>.

**Acknowledgements:** This work was supported by a Wellcome Trust International Grant (for A.V.N.). We are grateful to Dr. B.N.Green of the VG BIOTECH, Cheshire for electrospray-MS analyses.

## References and Notes:

- 1. Thomas, J.R.; McConville, M.J.; Thomas-Oates, J.E.; Homans, S.W.; Ferguson, M.A.J.; Gorin, P.A.J.; Greis, K.D.; Turco, S.J., *J. Biol. Chem.*, **1992**, *267*, 6829.
- 2. Nikolaev, A.V.; Ivanova, I.A.; Shibaev, V.N., Carbohydr. Res., 1993, 242, 91.
- 3. The mannoside 4 (mp 85-87°C) was prepared by glycosylation of 9-decen-1-ol with acetobromomannose (Hg(CN)<sub>2</sub>/HgBr<sub>2</sub>, CH<sub>3</sub>CN), followed by O-deacetylation and selective O-benzoylation<sup>13</sup> (3 eq. BzCl, pyridine, -20°C).
- 4. Kovac, P.; Edgar, K.J., J. Org. Chem., 1992, 57, 2455.
- 5. Compounds 4-10, 14, and 15 gave both an acceptable elemental analysis and reasonable NMR data. [ $\alpha$ ]<sub>D</sub> values (at 22°C in CHCl<sub>3</sub>): for 4 +12.5°; for 5 +41°; for 6 -10°; for 7 +26°; for 8 +91.2°; for 9 +62.7°; for 10 +31.5°; for 14 -44°; for 15 -55°.
- 6. Byramova, N.E.; Ovchinnikov, M.V.; Backinowsky, L.V.; Kochetkov, N.K., Carbohydr Res., 1983, 124, c8-c11.
- 7. The compound 5 (mp  $183-184^{\circ}$ C) was prepared in a yield of 64% by selective O-benzoylation  $^{13}$  of D-mannose (4 eq. BzCl, pyridine,  $-40^{\circ}$ C).
- 8. Iversen, T.; Josephson, S.; Bundle, D.R., J. Chem. Soc., Perkin Trans 1, 1981, 2379.
- 9. The structures of 11 and 16-19 were supported by NMR and FAB-MS (or ES-MS) data.  $[\alpha]_D$  values (at 22°C in CHCl<sub>3</sub>); for 11 +24.1°; for 16 -22°; for 17 +70.2°; for 18 +64.5°; for 19 +31.2°.
- 10.  $^{31}P$  NMR (D<sub>2</sub>O) data: for 1-3  $^{\delta}$  1.85, 1.86 and 1.90, respectively. [ $\alpha$ ]<sub>D</sub> values (at 22°C in MeOH): for 1 +40.5°; for 2 +20°; for 3 + 39.5°.
- 11.  $^{13}$ C NMR (D<sub>2</sub>O) data: for 1  $^{5}$  65.53 ( $J_{c,p} \sim 4$  Hz, C-6 of G), 69.89 (C-3 of M'), 71.08 ( $J_{c,p}$  8.3 Hz, C-2 of M'), 73.69 (C-5 of M'), 74.89 ( $J_{c,p}$  7.3 Hz, C-5 of G), 97.12 ( $J_{c,p}$  5.4 Hz, C-1 of M'); for 2  $^{5}$  65.64 (2C,  $J_{c,p}$  5.6 Hz, C-6 of G & G'), 69.84 (2C, C-3 of M' & M"), 71.07 (2C,  $J_{c,p}$  7.4 Hz, C-2 of M' & M"), 73.64 (2C, C-5 of M' & M"), 74.93 (2C,  $J_{c,p}$  7.5 Hz, C-5 of G & G'), 97.03 (2C,  $J_{c,p}$  5.6 Hz, C-1 of M' & M"); for 3  $^{5}$  65.43 (3C,  $J_{c,p}$  5.2 Hz, C-6 of G-G"), 69.94 (2C, C-3 of M' & M"), 70.67 (C-3 of M""), 71.05 (2C,  $J_{c,p}$  7.4 Hz, C-2 of M' & M"), 73.51 (2C, C-5 of M' & M"), 74.84 (3C,  $J_{c,p}$  8.1 Hz, C-5 of G-G"), 75.03 (C-5 of M""), 80.15 ( $J_{c,p}$  7.4 Hz, C-2 of M""), 95.85 ( $J_{c,p}$  4.6 Hz, C-1 of M""), 96.99 (2C,  $J_{c,p}$  4,6 Hz, C-1 of M' & M").
- 12. O'Connor, J.V.; Nunez, H.A.; Barker, R., Biochemistry, 1979, 18, 500.
- 13. Williams, I.M.; Richardson, A.C., Tetrahedron, 1967, 23, 1369.